Stellar evolution and nucleosynthesis
- Low- and intermediate mass stars -

Corinne Charbonnel
CNRS & Geneva Observatory
Stellar evolution and nucleosynthesis
- Low and intermediate-mass stars -

- Evolution and nucleosynthesis in stars:
 A global overview of the hydrostatic phases
 Diagrams: HRD, log Tc vs log ρc, main evolution and nucleosynthetic phases,
 mass limits for the various nucleosynthetic paths

- Main sequence nucleosynthesis - Clues from 3He

- Nucleosynthesis in AGB stars
 AGB structure, TP, mass loss, HBB, 3d dredge-up, rotation, processus-s, yields
 Constraints from PNe and post-AGBs
From ~ 0.9 to 8M_☉

Adapted from Lattanzio

H → He

He → C,O

Unique nucleosynthesis
3d dredge-up
Strong mass loss

1st dredge-up

2d dredge-up

To PN and WD...

From C. Charbonnel. NIC IX summer school. CERN. June 21, 2006
Figure by M. Forestini. NIC IX summer school. CERN. June 21, 2006.
Global Structure of an AGB star

$M = 1.0 \, M_{\odot}$

Bottom of Convective Envelope

$M_{\text{H-shell}} = 0.560 \, M_{\odot}$

$M_{\text{He-shell}} = 0.516 \, M_{\odot}$

C+O core

$R_{\text{H-shell}} = 0.035 \, R_{\odot}$

$R_{\text{He-shell}} = 0.017 \, R_{\odot}$

$R_{\text{BCE}} = 2.47 \, R_{\odot}$

$R = 225 \, R_{\odot}$

Figure by F. Herwig
Kippenhahn diagram on TP-AGB phase

- **HeBS**
- **CO core**
- **Intershell**
- **HBS**
- **CE base**
- **TP**
- **3d dredge-up**
- **Pulse-driven convective zone**

$\log \frac{L_{\text{He}}}{L_\odot} \uparrow 5$ to 8

Adapted from N. Mowlavi

C. Charbonnel. NIC IX summer school. CERN. June 21, 2006
Nucleosynthesis on the TP-AGB
Transport of H into C-rich layers
Radiative s-process via $^{13}\text{C}(\alpha,n)^{16}\text{O}$
during the interpulse

HBB (M \geq 4Msun)
CNO (primary ^{14}N), NeNa, MgAl
^7Li via Cameron-Fowler mechanism

Strong mass loss
3d dredge-up
ashes of the thermal pulse brought to the surface
He, ^{12}C
^{16}O, ^{22}Ne, ^{25}Mg
s-process

Ashes of the interpulse
HBS engulfed into the pulse convective tongue

He burning
CNO, NeNa, MgAl

HBS
Intershell

HBS
CO core

He burning $3\alpha \rightarrow$ primary ^{12}C \rightarrow ^{14}N (CNO)
$^{14}\text{N}(\alpha,\gamma)^{18}\text{F}(\beta^+)^{18}\text{O}(\alpha,\gamma)^{22}\text{Ne}$
$^{22}\text{Ne}(\alpha,n)^{25}\text{Mg}$, $^{22}\text{Ne}(\alpha,\gamma)^{26}\text{Mg}$
s-elements and ^{15}N from intershell ^{13}C burning
✓ **Third dredge-up** \((M \geq 1.5M_\odot \text{ at } Z_\odot)\)
 products of He-burning in the TP
 \(^4\text{He}, ^{12}\text{C}, ^{16}\text{O}, ^{22}\text{Ne}, ^{25}\text{Mg}, \text{s-process elements increase}\)
✓ **Hot-bottom burning** \((M \geq 4 - 4.5M_\odot)\)
 CN-cycle: \(^{12}\text{C} \rightarrow ^{13}\text{C} \rightarrow ^{14}\text{N}\)
 ON-cycle: \(^{16}\text{O} \rightarrow ^{14}\text{N}\)

Predictions depend on
✓ Stellar parameters
 \(M, Z\)
✓ Input physics prescriptions
 Nuclear reaction rates, opacities, …
✓ Various incompletely understood physical parameters
 Mass loss, convection, transport processes, rotation, …
 which rests on *semiempirical calibrations*
 (e.g. C star luminosity function, initial-final M relation)
 that have to be *extrapolated*
 to a range of \(M, Z\) for which *no empirical data* are available
Illustration
of the uncertainties
on the yields
→ Mass loss
Mass loss affects the AGB duration, i.e. the number and strength of TPs and subsequent 3d DUP events and the growth of Mcore.

A minimum M_{envelop} is required for HBB and 3d DUP to occur. HBB may be shut down long before 3d DUP ends.

Expected number of TP vs initial M^*

- **Renzini & Voli (81)**
 Reimers law (75), no superwind

- **Marigo (00)**
 Vassiliadis & Wood (93)

\[
Z = Z_\odot \\
0.008 \\
0.004
\]

Marigo (00)
C. Charbonnel. NIC IX summer school. CERN. June 21, 2006
Mass loss affects the AGB duration, i.e. the number and strength of TPs and subsequent 3d DUP events and the growth of Mcore. A minimum M_{envelop} is required for HBB and 3d DUP to occur. HBB may be shut down long before 3d DUP ends.

Integrated yields as a function of Z

Renzini & Voli (81) — — —
Reimers law (75), no superwind

Marigo (00)
Vassiliadis & Wood (93)

Marigo (00)
C. Charbonnel. NIC IX summer school. CERN. June 21, 2006
Illustration of the uncertainties on the yields → The case of O and Na

C. Charbonnel. NIC IX summer school. CERN. June 21, 2006
HBB (M > 4Msun)
CNO, NeNa
At higher T, 23Na destroyed again via 23Na(p,γ)24Mg

Strong mass loss
3d dredge-up
ashes of the thermal pulse brought to the convective envelope (16O, 22Ne)

H burning
CNO, NeNa (negligible)

Primary production of 16O by 12C(α,γ)
14N (CNO) → 14N(α,γ)18F(β+)18O(α,γ)22Ne

C. Charbonnel. NIC IX summer school. CERN. June 21, 2006
Illustration of the uncertainties on the yields

→ HBB and 3d DUP
O, Na evolution at the surface of a low-Z massive TP-AGB star

Delicate interplay of 3d dredge-up and hot bottom burning

(a) No 3DUP, only HBB
→ Large 16O depletion
→ 23Na depletion
(due to the lack of 22Ne dredged-up)

(b) Strong 3DUP, HBB, no mass loss
→ 3DUP of the 16O-rich layers below the TP
→ 23Na increase (from dredged-up 22Ne)

t/1000yr
(t=0 : 1st TP)

Denissenkov & Herwig (03)

Full evolution models

C. Charbonnel. NIC IX summer school. CERN. June 21, 2006
Illustration of the uncertainties on the yields → Convection C. Charbonnel. NIC IX summer school. CERN. June 21, 2006
Impact of convection

Ventura & D’Antona (05 I)
See also Renzini & Voli (81), Sackmann & Boothroyd (91),
Blöcker & Schönberner (91), D’Antona & Mazzitelli (96)

Full Spectrum of Turbulence (Canuto & Mazzitelli 91)
→ much more efficient HBB than with MLT
(on the AGB: higher L, stronger mass loss)

MLT17:
Little O depletion (factor of ~2)
Extremely large increase of Na and N
C+N+O increase by ~ 0.8dex

C. Charbonnel

FST:
Largest O depletion
Slight decrease of Na
C+N+0 conserved
Impact of convection on nucleosynthesis

Fenner et al. (04)
Overproduction of (primary) ^{23}Na due to the burning of dredged-up ^{20}Ne
Ventura & D’Antona (05II)
Underproduction of ^{23}Na due to smaller number of 3DUP episodes and larger T

Both sets are unable to reproduce the data

« The predictive power of AGB models is still undermined by many uncertainties » (VD’A05)

C. Charbonnel. NIC IX summer school. CERN. June 21, 2006
Illustration of the uncertainties on the yields → Rotation
Rotating AGB models

Decressin, Charbonnel, Siess, Palacios, Meynet (06)

STAREVOL

Meridional circulation and shear turbulence
Zahn (92), Chaboyer & Zahn (95)
Talon & Zahn (97), Maeder & Zahn (98)

Same physics successfully applied to
Massive stars: HeBCN anomalies (see references in Maeder & Meynet 00)
Low-mass stars: Hot side of the Li dip, Li in subgiants (Charbonnel & Talon 99,
Palacios et al.03, Pasquini et al.04)
Rotating AGB models

Decressin, Charbonnel, Siess, Palacios, Meynet (06)

7M⊙ star,
Z = 10^{-5}

Profiles at the end of central He-burning
Primary ^{14}N in rotating intermediate-mass stars

Meynet & Maeder (02)

$7M_M$ star, $Z = 10^{-5}$

Profiles at the end of central He-burning

C. Charbonnel. NIC IX summer school. CERN. June 21, 2006
The importance of PNe as constraints on nucleosynthesis
Insight on the nucleosynthetic properties of the PNe progenitors

- C, N: Efficiency of 3d DUP vs HBB
- He: Cumulative effect of the 1st, 2d, 3d dredge-up, and HBB
- O: Composition of the TP, efficiency of HBB
- Ne: Synthesis during the TP, efficiency of HBB, s-process $^{22}\text{Ne}(\alpha,n)^{25}\text{Mg}$

Marigo et al. (03) vs Grevesse & Sauval (98) + O from Allende-Prieto et al. (01)

ISO data

Marigo et al. (03) vs Grevesse & Sauval (98) + O from Allende-Prieto et al. (01)
Insight on the nucleosynthetic properties of the PNe progenitors

✓ C, N : Efficiency of 3d DUP vs HBB

✓ He : Cumulative effect of the 1st, 2d, 3d dredge-up, and HBB

✓ O : Composition of the TP, efficiency of HBB

✓ Ne : Synthesis during the TP, efficiency of HBB, s-process $^{22}\text{Ne}(\alpha,n)^{25}\text{Mg}$

Marigo et al. (03) vs Asplund et al. (05)
The s-process
(Z,A) + n → (Z,A+1) + γ

If (Z,A+1) is stable, it will capture another neutron latter on
If (Z,A+1) is unstable:

With a low neutron flux, (Z,A+1) may decay before next n-capture

(Z,A+1) → β− + ν + (Z+1,A+1) : s-process

Nuclei symmetric in proton and neutron numbers

With a strong neutron flux,

(Z,A+1) + n → (Z,A+2) + γ : r-process

In the s-process the n-captures are slower than subsequent β-decays.
Typical neutron densities are 7 < log N_n < 10.
s-process: two neutron sources

\[^{12}\text{C} + \alpha \rightarrow n + ^{16}\text{O} \]
- n-release during the interpulse phase
- radiative conditions, \(T_8 > 0.9 \)
- low-n densities: \(N_n < 10^7 \text{ cm}^{-3} \)
- no activation of branchings

\[^{22}\text{Ne} + \alpha \rightarrow n + ^{25}\text{Mg} \]
- n-release in intershell during TP
- convective conditions, \(T_8 > 2.5 \)
- high-n densities: \(N_n < 10^{10} \text{ cm}^{-3} \)
- activation of branchings
Radiative s-process in AGB stars

Herwig et al. (2003)

C. Charbonnel. NIC IX summer school. CERN. June 21, 2006
500yr after the He-flash
After the end of the DUP episode
D : overshoot of the envelope convection

1800yr after the He-flash
HBS has set in again

$M_{(^{13}\text{C} \text{pocket})} \sim 2 \text{ to } 4 \times 10^{-7} M_{\odot}$
s-process element distribution requires
$M_{(^{13}\text{C} \text{pocket})} \sim 1 \text{ to } 2 \times 10^{-5} M_{\odot}$

Very end of the interpulse
^{13}C has already been destroyed

Onset of the next thermal pulse
D : upper overshoot zone of the TP

Herwig (2000)
Abundance profiles in the partial mixing zone at 3 times during the interpulse

Herwig et al. (2003)
Helix nebula (The closest PN from Earth)

C. Charbonnel. NIC IX summer school. CERN. June 21, 2006
White dwarf

- Form as the outer layers of a low-mass red giant star puff out to make a planetary nebula.
- Since the lower mass stars make the white dwarfs, this type of remnant is the most common endpoint for stellar evolution.
- If the remaining mass of the core is less than 1.4 solar masses, the pressure from the degenerate electrons (called electron degeneracy pressure) is enough to prevent further collapse.
White dwarf density

- Because the core has about the mass of the Sun compressed to something the size of the Earth, the density is tremendous: around 10^6 times denser than water (one sugarcube volume's worth of white dwarf gas has a mass > 1 car)!
- A higher mass core is compressed to a smaller radius so the densities are even higher.
- Despite the huge densities and the “stiff” electrons, the neutrons and protons have room to move around freely: they are not degenerate.
Radius of a white dwarf

Fraknoi/Morrison/Wolff, Voyages Through the Universe, 2/e
Figure 22.1 Relating Masses and Radii of White Dwarfs

Harcourt, Inc. Items and derived items copyright ©2000 by Harcourt, Inc.
White dwarf cooling

- White dwarfs shine simply from the release of the heat left over from when the star was still producing energy from nuclear reactions.
- There are no more nuclear reactions occurring so the white dwarf cools off from an initial temperature of about 100,000 K.
- The white dwarf loses heat quickly at first cooling off to 20,000 K in only about 100 million years, but then the cooling rate slows down:
 - it takes about another 800 million years to cool down to 10,000 K
 - and another 4 to 5 billion years to cool down to the Sun's temperature of 5,800 K.
White dwarf cooling

- Their rate of cooling and the distribution of their current temperatures can be used to determine the age of our galaxy or old star clusters that have white dwarfs in them
 - However, their small size makes them extremely difficult to detect
- Because it is above the atmosphere, the HST can detect these small dead stars in nearby old star clusters called globular clusters
- Analysis of the white dwarfs may provide an independent way of measuring the ages of the globular clusters and provide a verification of their very old ages derived from main sequence fitting
White Dwarf Stars in Globular Cluster M4

NASA and H Richer (University of British Columbia) STScI-PRC02-10
White dwarfs in globular clusters
An independent measure of the age of the Universe

C. Charbonnel. NIC IX summer school. CERN. June 21, 2006